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1 Common Families of Distributions

1.1 Exponential Family

Definition 1.1 (Exponential Family (Casella and Berger, 2001, p. 111))
A family of pdfs or pmfs is called an exponential family if it can be expressed as

f(x|θ) = h(x)c(θ)exp

(
k∑

i=1

wi(θ)ti(x)

)
.

Definition 1.2 (Exponential Family (Farnia, 2023, Slide. 2))
Given a feature map ϕ : X → Rm and an m-dimensional canonical parameter vector

θ ∈ Rm, an exponential family is defined as the set P = {pθ : θ ∈ Rm} where the density

function pθ satisfies the following for a log-partition function A : Rm → R:

pθ(x) = exp
(
θ⊤ϕ(x)−A(θ)

)
.

Note on Many common families are exponential families. These include the continuous fam-

ilies—normal, gamma, and beta, and the discrete families—binomial, Poisson, and negative

binomial. For example, define1

h(x) = 1 for all x;

c(θ) = c(µ, σ) =
1√
2πσ

exp

(
−µ2

2σ2

)
, −∞ < µ < ∞, σ > 0;

w1(µ, σ) =
1

σ2
, σ > 0; w2(µ, σ) =

µ

σ2
, σ > 0;

t1(x) = −x2/2; and t2(x) = x.

Then

f(x|µ, σ2) = h(x)c(µ, σ)exp[w1(µ, σ)t1(x) + w2(µ, σ)t2(x)].

With the help of indicator function, f can be rewritten as

h(x)c(µ, σ)exp[w1(µ, σ)t1(x) + w2(µ, σ)t2(x)]I(−∞,∞)(x).

1Sometimes we define parameters as (θ1, θ2) =
(

µ
σ2 ,− 1

2σ2

)
(Wasserman, 2020, Lec. 12). Thus, we have sufficient

statistics (x, x2).



1 Common Families of Distributions

Lemma 1.1 (Log-partition Function (Farnia, 2023, Slide. 2))
The log-partition function A : Rm → R can be determined as:

A(θ) = log

(∑
x∈X

exp
(
θ⊤ϕ(x)

))
.

Proof Because ∑
x∈X

pθ(x) = 1.

■

Lemma 1.2
(i) The gradient of the log-partition function A is the mean of random vector ϕ(x):

∇A(θ) = µθ = EX∼pθ [ϕ(x)].

(ii) The Hessian of the log-partition function A is the covariance matrix of random

vector ϕ(x):

HA(θ) = CovX∼pθ(ϕ(x)).

Proof
(i) Because

∇A(θ) =

∑
x∈X eθ

⊤ϕ(x)ϕ(x)∑
x∈X eθ

⊤ϕ(x)
=
∑
x∈X

eθ
⊤ϕ(x)∑

x′∈X eθ
⊤ϕ(x′)

ϕ(x) =
∑
x∈X

pθ(x)ϕ(x).

(ii) Because (Wasserman, 2020, Lec. 12)
∂2A(θ)

∂θi∂θj
= E[(ϕi(x)− E[ϕi(x)])(ϕj(x)− E[ϕj(x)])] = cov(ϕi(x), ϕj(x)).

■

Lemma 1.3
The log-partition function A of an exponential family is a convex function.

Proof From probability we know that a covaraince matrix is always positive semi-definte (PSD).

Thus, the Hessian of A is a PSD matrix, implying it is a convex function. ■

Note on In other words, ∇A(θ) is a monotone function of the canonical parameters θ, i.e.,

∀θ1,θ2 ∈ Rd : (θ2 − θ1)
⊤ (µθ2

− µθ1

)
≥ 0.

Moreover, under the assumption of invertible map, we have

θ = (∇A)−1(µ).
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1 Common Families of Distributions

1.1.1 Gamma Distribution

Definition 1.3 (Gamma Distribution)
An uncertain positive quantity θ has a gamma(a, b) distribution if

p(θ) = dgamma(θ, a, b) =
ba

Γ(a)
θa−1e−bθ, for θ, a, b > 0

E[θ] =
a

b

V ar[θ] =
a

b2

mode[θ] =

 (a− 1)/b if a > 1

0 if a ≤ 1

(1)

From the Gamma Distribtion’s density

1 =

∫ ∞

0

ba

Γ(a)
θa−1e−bθdθ for any values a, b > 0

We can obtain ∫ ∞

0
θa−1e−bθdθ =

Γ(a)

ba
for any values a, b > 0

1.1.2 Beta Distribution

Definition 1.4 (Beta distribution)
An uncertain quantity θ, known to be between 0 and 1, has a beta(a, b) distribution ifa

p(θ) = dbeta(θ, a, b) =
Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1 for 0 ≤ θ ≤ 1

And beta distribution has follow properties:

mode[θ] =
a− 1

(a− 1) + (b− 1)
if a > 1 b > 1;

E[θ] =
a

a+ b

V ar[θ] =
ab

(a+ b+ 1)(a+ b)2
=

E[θ]E[1− θ]

a+ b+ 1∫ 1

0
θa−1(1− θ)b−1dθ =

Γ(a)Γ(b)

Γ(a+ b)

(2)

aNote that Γ(x+ 1) = x! if x is a positive integer, and Γ(1) = 1.
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2 Transformation

1.1.3 chi-squared

1.2 Location-scale Family

2 Transformation

3 Point Estimation

3.1 Maximum Likelihood Method

Definition 3.1 (Maximum Likelihood Estimator)
Given a parameterized family of distributions {pθ : θ ∈ Rd}, the maximum liklihood

estimator (MLE) of the model parameters from observed samples x1, · · · ,xn will be

θMLE := argmax
θ∈Rd

n∏
i=1

pθ(xi)

⇐⇒ argmax
θ∈Rd

n∑
i=1

logpθ(xi) (log is monotontic.)

Note on Product The basic idea of MLE is that we want to find a good estimate of the unknown

parameter θ which maximizes the probability or the likelihood of getting the data we observed,

i.e.,

max
θ

P (X1 = x1, · · · , Xn = xn) =
n∏

i=1

pθ(xi).

Definition 3.2 (MLE for Exponential Family)
Given a exponential family of distributions {pθ : θ ∈ Rd} with canonical parameters θ

and log-partition function A(θ), the maximum liklihood estimator (MLE) of the model

parameters from observed samples x1, · · · ,xn will be

θMLE := argmax
θ∈Rd

(
1

n

n∑
i=1

ϕ(xi))
⊤θ −A(θ)

= argmax
θ∈Rd

µ̂⊤θ −A(θ) (Let µ̂ denote the empirical mean)

Lemma 3.1
The maximum likelihood problem for fitting canonical parameters of an exponential family

is a convex optimization problem.

Proof Obviously the objective function regarding θ is concave. ■

Corollary 3.1
Since the maximum likelihood problem for fitting canonical parameters of an exponential
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4 Large-Sample Theory (Keener, 2010, Ch. 8)

family is a convex optimization problem, by the FOC, we have

θMLE = (∇A)−1(µ̂).

In addition, the mean parameter µθMLE under the maximum likelihood estimator match

the empirical mean µ̂:
µθMLE =∇A(θMLE)

=µ̂

Note on For example,

Interestingly, this problem is not jointly convex in mean and variance. Though we can derive

the optimal solution via sequential optimization. The key here is that the maximum over µ does

not depend on σ, and for this maximum over µ, there is again a unique optimal σ (Bazzi, 2018;

Kanti, 2018).

Theorem 3.1 (Central Limit Theorem for Canonical parameter)
Consider a sequence of independent random vectors (xi)

∞
i=1 distributed as pθ. Then, for

the Maximum Liklikelihood canonical parameter θMLE
n from n samples x1, · · · ,xn, the

following holds
√
n
(
θMLE
n − θ∗) dist−→ N

(
0,Cov−1

θ∗ (ϕ(x))
)
.

3.2 Method of Moments

Definition 3.3 (Method of Moments Estimator)
Given a parameterized family of distributions {pθ : θ ∈ Rd}, the method of moments

estimator θ̂ of the model parameters from observed samples x1, · · · ,xn matches the

empirical mean vector, i.e., θ̂ satisfies

Eθ̂[ϕ(x)] =
1

n

n∑
i=1

ϕ(xi).

3.3 Connections

3.3.1 Method of Moments and MLE

Proposition 3.1 (Equivalence of Method of Moments and MLE)
Given a parameterized family of distributions {pθ : θ ∈ Rd} with feature function ϕ,

the method of moments estimator with ϕ-based moments results in the same estimator as

maximum likelihood estimator.

Proof Note that µθMLE = µ̂ by Corollary 3.1, and this coincides with the definition of the

method of moments estimator. ■
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4 Large-Sample Theory (Keener, 2010, Ch. 8)

4 Large-Sample Theory (Keener, 2010, Ch. 8)

This section focus on the behavior of certain sample as the sample size approaches infinity.

Although the notion of infinity is unreachable in reality, it can provide us with some useful

approximations for the finite-sample case.

4.1 Convergence in Probability and Weak Law of Large Numbers

Definition 4.1
A sequence of random variables Yn converges in probability to a random variable Y as

n → ∞, written Yn
p→ Y , if for every ϵ > 0,

P (|Yn − Y | ≥ ϵ) → 0

as n → ∞.

Proposition 4.1

If E(Yn − Y )2 → 0 as n → ∞, then Yn
p→ Y .

Proof By Chebyshev’s inequality, for any ϵ > 0,

P (|Yn − Y | ≥ ϵ) ≤ E (Yn − Y )2

ϵ2
→ 0.

■

Theorem 4.1 (Weak law of large numbers)
Suppose X1, X2, ... are i.i.d. with common mean µ and variance σ2, and let X̄n =

(X1 + · · ·+Xn) /n, then X̄n
p→ µ as n → ∞.

Proof This theorem can be proved by Proposition 4.1,

E
(
X̄n − µ

)2
= Var

(
X̄n

)
= σ2/n → 0.

■

Proposition 4.2

If f is continuous at c and if Yn
p→ c, then f (Yn)

p→ f(c).

Note on That is, if the sequence X1, X2, ... converges in probability to a random variable X

or to a constant a, if h is continuous, we can make conclusions about the sequence of random

variables h(X1), h(X2), ... too.

Proof Continuity means that given any ϵ > 0, there exists δϵ > 0 such that |f(y) − f(c)| < ϵ

whenever |y − c| < δϵ. Thus,

P (|Yn − c| < δϵ) ≤ P (|f (Yn)− f(c)| < ϵ) ,

which implies

P (|f (Yn)− f(c)| ≥ ϵ) ≤ P (|Yn − c| ≥ δϵ) → 0.
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4 Large-Sample Theory (Keener, 2010, Ch. 8)

■

Definition 4.2 (Consistency)
A sequence of estimators δn, n ≥ 1, is consistent for g(θ) if for any θ ∈ Ω,

δn
Pθ→ g(θ)

as n → ∞, where Pθ is the underlying probability measure.

4.2 Almost Sure Convergence and Strong Law of Large Numbers

Definition 4.3
Random variables Y1, Y2, ... defined on a common probability space converge almost

surely to a random variable Y on the same space if

P (Yn → Y ) = 1 or P
(
lim
n→∞

|Yn − Y | < ϵ
)
= 1.

Note on Difference This type of convergence is stronger than convergence in probability,

i.e., convergence almost surely implies convergence in probability. For example (Casella and

Berger, 2001, p. 234), consider the sample space S of the closed interval [0, 1] with the uniform

probability distribution. Define:

X1(s) = s+ I[0,1](s), X2(s) = s+ I[0, 12 ]
(s), X3(s) = s+ I[ 12 ,1]

(s),

X4(s) = s+ I[0, 13 ]
(s), X5(s) = s+ I[ 13 ,

2
3 ]
(s), X6(s) = s+ I[ 23 ,1]

(s),

etc. Let X(s) = s, and it is straightforward to see that Xn converges to X in probability.

However, Xn does not converge to X almost surely. For every s, the value Xn(s) alternates

between the values s and s+1 infinitely often. No pointwise convergence occus for this sequence.

Note on Example Consider the sample space S of the closed interval [0, 1] with the uniform

probability distribution (Casella and Berger, 2001, p. 234). Define r.v. Xn(s) = s + sn and

X(s) = s. For every s ∈ [0, 1), sn → 0 as n → ∞ and Xn(s) → s = X(s). However,

Xn(1) does not converge to 1 = X(1). But since the convergence occurs on the set [0, 1) and

P ([0, 1)) = 1, Xn converges to X almost surely.

Theorem 4.2 (Strong Law of Large Numbers)
If X1, X2, ... are i.i.d. with finite mean µ = EXi, and if X̄n = (X1 + · · ·+Xn) /n, then

X̄n → µ almost surely as n → ∞.

Note on Assumption Actually, both the weak and strong laws hold without the assumption of a

finite variance. The only moment condition needed is that E|Xi| < ∞.
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4 Large-Sample Theory (Keener, 2010, Ch. 8)

4.3 Central Limit Theorem

4.4 Convergence in Distribution

Definition 4.4 (Yn ⇒ Y or Yn ⇒ PY )
A sequence of random variables Yn, n ≥ 1, with cdf Hn, converges in distribution (or

law) to a random variable Y witch cdf H if

Hn(y) → H(y)

as n → ∞ whenever H is continuous at y.

Note on Pointwise convergence at continuity points Note that pointwise convergence of the

cdf only has to hold at continuity points of H . For example, suppose Yn = 1/n, a degenerate

r.v., and that Y is always zero. Then

Hn(y) = P (Yn ≤ y) = I{1/n ≤ y}.

If y > 0, Hn(y) → 1 as n → ∞, and if y ≤ 0, then Hn(y) = 0. And Hn(y) → H(y) if

y ̸= 0. In this example, Yn ⇒ Y , but the cdf Hn(y) do not converge to H(y) when y = 0, a

discontinuity point of H .

Note on Difference This type of convergence is weaker than other types of convergence, i.e.,

convergence in distribution is implied by convergence in probability and almost sure convergence.

And we have Theorem 4.3 and Theorem 4.4 to summarize their connections.

Note on Example Maximum of uniforms (Casella and Berger, 2001, p. 235). Suppose X1, ...

are i.i.d. uniform (0,1) and X(n) = max1≤i≤nXi. Then X(n) converges to 1 in probablity and

n(1−X(n)) converges in distribution to an exponential (1) r.v..

P
(∣∣X(n) − 1

∣∣ ≥ ε
)
= P

(
X(n) ≥ 1 + ε

)
+ P

(
X(n) ≤ 1− ε

)
= 0 + P

(
X(n) ≤ 1− ε

)
= (1− ε)n → 0 (i.i.d.)

And if we take ε = t/n, then we have

P
(
n
(
1−X(n)

)
≤ t
)
→ 1− e−t.

Theorem 4.3 ((Casella and Berger, 2001, p. 236))
If the sequence of r.v., X1, ... converges in probability to a random variable X , the

sequence also converges in distribution to X .

Theorem 4.4 ((Casella and Berger, 2001, p. 236))
The sequence of r.v., X1, ... converges in probability to a constant µ iff the sequence also

converges in distribution to µ. That is, the statement

P (|Xn − µ| > ε) → 0 for every ε > 0
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4 Large-Sample Theory (Keener, 2010, Ch. 8)

is equivalent to

P (Xn ≤ x) →

0 if x < µ

1 if x > µ
.

Theorem 4.5
Convergence in distribution, Yn ⇒ Y , holds iff Ef (Yn) → Ef(Y ) for all bounded

continuous functions f .

Corollary 4.1
If g is a continuous function and Yn ⇒ Y , then

g (Yn) ⇒ g(Y ).

4.5 Central Limit Theorem

Theorem 4.6 (Central Limit Theorem)
Suppose X1, X2, ... are i.i.d. with common mean µ and variance σ2. Take X̄n =

(X1 + · · ·+Xn) /n. Then
√
n
(
X̄n − µ

)
⇒ N

(
0, σ2

)
.

Note on The importance of this theorem is that the assumption of finite variances leads to

convergence to normality. However, it does not show how good the approximation is in general.

Note on The central limit theorem stated only provides direct information about distributions of

averages. To discuss variables that are smooth functions of an average, i.e., f(X̄n), the Taylor

approximation motivates Proposition 4.3.

Theorem 4.7 (Slutsky’s Theorem (Casella and Berger, 2001, p. 239))
If Xn → X in distribution and Yn → a, a constant, in probability, then

YnXn → aX in distribution.

Xn + Yn → X + a in distribution.

Theorem 4.8
If Yn ⇒ Y , An

p→ a, and Bn
p→ b, then

An +BnYn ⇒ a+ bY.

Note on This theorem combines convergence in distribution with convergence in probability.

4.6 The Delta Method

The previous section gives conditions under which a standardized random variable has a

limit normal distribution. However, sometimes we are more interested in the distribution of some
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4 Large-Sample Theory (Keener, 2010, Ch. 8)

function of the random variable rather than the random variable itself.

Proposition 4.3 (Delta Method)
With the assumptions in the central limit theorem, if f is differentiable at µ, then

√
n
(
f
(
X̄n

)
− f(µ)

)
⇒ N

(
0,
[
f ′(µ)

]2
σ2
)
.

Note on This use of Taylor’s theorem to approximate distributions is called the delta method,

and for the statistical application of Taylor’s theorem, we are most concerned with the first-order

Taylor series.

Note on This also means that if we use f(X̄n) as an estimator of f(µ), we can say approximately,

Eµf(X̄n) ≈ f(µ)

Varµ f(X̄n) ≈
[
f ′(µ)

]2
σ2

Note on Second-order Delta Method One concern is the possibility that f ′(µ) = 0, and this

leads to the Second-order Delta Method (Casella and Berger, 2001, p. 244).
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